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Abstract 

Long-term precipitation records are vital to many applications, especially the study of extreme 

events. The Tropical Rainfall Measuring Mission (TRMM) has served this need, but TRMM’s 

successor mission, Global Precipitation Measurement (GPM), does not yet provide a long-term 

record. Quantile mapping, the conversion of values across paired empirical distributions, offers 

a simple, established means to approximate such long-term statistics, but only within 

appropriately defined domains. This method was applied to a case study in Central America, 

demonstrating that quantile mapping between TRMM and GPM data maintains the 

performance of a real-time landslide model. Use of quantile mapping could bring the benefits 

of the latest satellite-based precipitation dataset to existing user communities such as those for 

hazard assessment, crop forecasting, numerical weather prediction, and disease tracking.
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Introduction 1 

Many users of precipitation data require long-term records, especially when characterizing 2 

extreme events. Satellite-based precipitation estimates can meet this need in locations without 3 

dense gauge networks. The National Aeronautics and Space Administration (NASA) has been 4 

providing near real-time precipitation data to the community since 2002 (Huffman et al. 2010, 5 

2007). The Tropical Rainfall Measurement Mission (TRMM) was launched in November, 1997. 6 

Its successor, the Global Precipitation Measurement (GPM) Core Observatory, was launched in 7 

February 2014 and extends observations of both falling snow and heavy to light rain past 65˚N-8 

S (Hou et al. 2014). To provide nearly global coverage with short revisit times, the TRMM and 9 

GPM missions rely on a constellation of partner satellites. The TRMM Multi-satellite 10 

Precipitation Analysis (TMPA) covers the area from 50˚N-S from 2000-present (Table 1), while 11 

the Integrated Multi-satellitE Retrievals for GPM (IMERG) covers 60˚N-S from March 2014-12 

present (Huffman et al. 2015).  13 

 14 

Due to the use of different sensors, algorithms, and calibrations, the IMERG and TMPA products 15 

differ considerably. A comparison of percentiles from 7 March 2015 to 6 March 2016 for the 16 

GIS-formatted IMERG Version 3 Late run (IMERG-L) and Real-time TMPA Version 7 (TMPA-RT) 17 

daily products (Huffman 2016a,b) revealed some of the characteristics of these differences 18 

(Figure 1). Days with zero estimated precipitation were included in the distribution because 19 

TMPA-RT and IMERG-L differ in the ability to detect very light precipitation (Hou et al. 2014). At 20 

specific percentiles, the TMPA-RT values were resampled to a 0.1° grid by the nearest neighbor 21 
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method, then the IMERG-L values were subtracted. At the 75th percentile (Fig 1a), there are 22 

small differences between TMPA-RT and IMERG-L, but differences of more than 100 mm day-1 23 

at the 95th percentile (Fig 1b). TMPA-RT tends to show heavier tropical precipitation (blue), and 24 

IMERG-L tends to show heavier mid-latitude precipitation (red). In particular, the southern 25 

ocean shows a large and relatively consistent difference between IMERG-L and TMPA-RT. 26 

However, many locations do not fit this pattern, including some mountains and inland water 27 

bodies. In addition to geographic heterogeneity, the relationship between TMPA-RT and 28 

IMERG-L may vary seasonally and interannually. Combined, these factors complicate the use of 29 

IMERG data in TMPA-based applications. 30 

 31 

Satellite precipitation data are used in many applications such as flood monitoring, crop 32 

forecasting, numerical weather prediction, and disease tracking (Kucera et al. 2013; Kirschbaum 33 

et al. 2016). These user communities have relied upon TMPA data, and several workshops have 34 

highlighted the need for long precipitation records (Ward et al. 2015; Ward and Kirschbaum 35 

2014). While the GPM mission plans to create a consistent record of precipitation available 36 

from 1998 to the present using TRMM, GPM, and partner data, this processing is not planned to 37 

begin before 2018. Until that happens, application developers could take advantage of IMERG’s 38 

improved spatial and temporal resolution and accuracy while maintaining the benefits of 39 

TMPA’s long time series by adapting IMERG data to TMPA-equivalent values with quantile 40 

mapping. Quantile mapping (also known as quantile matching, cumulative distribution function 41 

[CDF] matching, etc.) has been used to convert gridded precipitation data to its point-based 42 

equivalent (Gudmundsson et al. 2012), to adapt gridded precipitation data to a different spatial 43 
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resolution (Maraun 2013), and to correct model bias at the same resolution as observational 44 

data (Cannon et al. 2015). Gudmundsson et al. (2012) recommended the use of nonparametric 45 

data transformations (e.g. empirical quantiles) for reducing biases across the entire distribution, 46 

so these methods may be more appropriate for transforming extreme values such as rainfall 47 

thresholds. An example of the statistical transformation of an empirical rainfall distribution can 48 

be found in the second chapter of Some Applications of Statistics to Meteorology (Panofsky and 49 

Brier 1968).  50 

 51 

To demonstrate the use of IMERG in a TMPA-based application, quantile mapping from TMPA-52 

RT to IMERG-L was applied to the Landslide Hazard Assessment for Situational Awareness 53 

(LHASA) model. LHASA issues a daily nowcast with a resolution of approximately 1 kilometer 54 

(Kirschbaum et al. 2015a). The nowcast includes both a moderate-hazard level to maximize 55 

sensitivity and a high-hazard level to reduce the number of false alarms. LHASA combines 56 

rainfall and landslide susceptibility with a heuristic decision tree. First, areas rated “very low” 57 

on the Landslide Susceptibility Map of Central America and the Caribbean Islands (Kirschbaum 58 

et al. 2015b) are excluded from further analysis. Second, a 60-day antecedent rainfall index is 59 

calculated from TMPA-RT. Third, the current daily rainfall accumulation is compared to 1 of 2 60 

climatological thresholds, depending upon the level of antecedent rainfall. LHASA was 61 

calibrated over the period 2007-2013 with reference to the Global Landslide Catalog (GLC), an 62 

inventory of rainfall-triggered landslides reported by media and other sources (Kirschbaum et 63 

al. 2015c, 2010). LHASA was validated by the GLC events occurring in 2014. 64 
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 65 

Methods 66 

LHASA was developed and calibrated with TMPA-RT precipitation estimates, but the transition 67 

from TRMM to GPM required that the model be updated to use IMERG-L inputs, which do not 68 

currently have the long record needed for development of the necessary rainfall-landslide 69 

relations. The quantile mapping technique was accomplished in four main steps: 1) evaluation 70 

of data time series and characteristics, 2) selection of space-time domain, 3) quantile 71 

calculations, and 4) quantile mapping through LHASA case study.  Nearly 17 years of TMPA-RT 72 

and 1.2 years of IMERG-L were available for this case study.  73 

 74 

First, the characteristics of each dataset were considered. Both products are produced at a 75 

moderate spatial resolution, but the finer resolution of IMERG-L is associated with higher 76 

precipitation estimates for extreme events, as expected. Land and sea pixels exhibit distinct 77 

rainfall patterns in both IMERG-L and TMPA-RT. The relationship between products is spatially 78 

heterogeneous on land (Figure 1), is not controlled solely by elevation, and is likely to be 79 

difficult to predict on the basis of other variables. 80 

 81 

Second, the selection of a space-time domain on which to perform quantile mapping is 82 

necessarily a compromise between sample size and the relevance of the empirical distributions 83 

to a specific time and place (Reichle and Koster 2004; Voisin et al. 2010). The short time period 84 
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for which IMERG-L is available, combined with the relatively homogeneous time series, 85 

suggested that calculation of separate monthly quantiles would reduce the sample size, without 86 

making the data transformation much more representative of each month. Therefore, all data 87 

from 6 May 2015 to 5 May 2016 were assigned to the same domain. Spatial heterogeneity of 88 

precipitation estimates across the region implied that it would be beneficial to partition the 89 

data before quantile mapping, but the absence of strong ties between the difference maps and 90 

elevation, land cover, or standard climate zones made it difficult to do so on an a priori basis. 91 

More importantly, LHASA focuses on extreme rainfall events. This upper tail of the distribution 92 

is best described by a large sample. Therefore, the entire land area was assigned to single 93 

domain. Marine pixels were not included, because these are not representative of rainfall on 94 

land.  95 

 96 

Third, 100,000 quantiles were calculated for the TMPA-RT and IMERG-L products in the 97 

statistical software R (R Core Team 2015; Hijmans 2015). The large number of quantiles (1 98 

cutpoint for every 0.001% of each distribution) approximated the empirical CDF and minimized 99 

the error associated with interpolation of extreme rainfall. Then the quantiles for IMERG-L and 100 

TMPA-RT were paired into a single table that described the whole land area over 1 year. Fourth, 101 

the table was applied to each LHASA daily rainfall threshold (based on TMPA-RT) to produce 102 

equivalent IMERG-L thresholds (Figure 2). These four steps were repeated for values of the 60-103 

day antecedent rainfall index.  104 

 105 
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Fourth, the quantile-mapped version of LHASA was run with IMERG-L data. The performance of 106 

the adapted rainfall thresholds was evaluated by a comparison to the original TMPA-based 107 

model. The true positive rate (TPR) was determined by calculating the proportion of reported 108 

landslide events (GLC) that were predicted correctly by LHASA. There may be some error in the 109 

reported dates of GLC events (Kirschbaum et al. 2015c). To address this issue, TPR was 110 

calculated for 1-day, 3-day, and 7-day windows (e.g. if LHASA correctly predicted a landslide 111 

that occurred 2 days before its reported date, it would be counted as a true positive only for 112 

the 7-day window). The number of pixel-days for which a nowcast was issued without a GLC 113 

event were divided by the total number of pixel-days to determine the false positive rate (FPR). 114 

These results were also compared to the LHASA calibration period.  115 

 116 

Results 117 

In general, the version of LHASA with IMERG-adapted thresholds remained very similar to the 118 

TMPA version. Figure 3 shows the TMPA rainfall thresholds (a) and the new IMERG thresholds 119 

(b). The magnitude of the change was greatest in the wettest locations due to differences in 120 

calibration, the shift to finer resolution, or both. Model performance with IMERG-L was 121 

comparable to TMPA-RT for both the high-hazard and moderate-hazard nowcasts (Table 2). The 122 

FPR was consistent across inputs, due to the fact that quantile mapping maintains the 123 

frequency with which a threshold will be exceeded. Although better results were obtained 124 

during the model calibration period (2007-2013), TMPA-RT and IMERG-L produced comparable 125 

postcalibration performance.  126 
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 127 

Although the overall performance was good (Table 2), the high-hazard model run with IMERG-L 128 

produced a FPR over 20% in San José, Costa Rica. The anomaly did not occur elsewhere and was 129 

caused by the fact that the IMERG record shows unusually frequent and heavy rainfall in the 130 

Costa Rican capital (Figure 4) compared to the nearby site of El Bosque, as well as the entire 131 

region. Thus, the single Central American domain was not representative of the relationship 132 

between IMERG and TMPA at this site, and quantile mapping did not correct the local bias.  133 

 134 

Discussion 135 

LHASA showed comparable performance for IMERG and TMPA inputs, which suggests that 136 

quantile mapping successfully adapted the model to the new precipitation data stream. It is 137 

anticipated that subsequent versions of IMERG will further improve the precipitation estimates, 138 

particularly for extreme rainfall. However, performance varied locally. Anomalous locations 139 

may be poorly served by quantile mapping across a single time-space domain. If the application 140 

were focused on such a location, quantile mapping should be applied more locally.  141 

 142 

In other study areas and for other applications, it may be appropriate to use a different quantile 143 

mapping scheme. In cases where a large amount of data is available and the relationship 144 

between TMPA and IMERG varies seasonally, it may be helpful to segment the data by month 145 

or season before quantile mapping (e.g. Turkington et al. 2016; Wood et al. 2004). In cases with 146 

little to no seasonal variation, it may be appropriate to include partial years in the precipitation 147 
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distribution. The land surface could be divided into elevation or climate zones, if these features 148 

were consistently associated with biases in the precipitation data. In cases with a high degree of 149 

spatial heterogeneity, it may be necessary to treat each pixel separately (e.g. Wood et al. 2004; 150 

Voisin et al. 2010), which would require numerous data transformations and a sufficient 151 

temporal record at each point. Another approach is to calculate quantiles within a spatial 152 

sampling window (Reichle and Koster 2004). In some cases, there may be too little data that is 153 

relevant to the research topic; these studies may require a more sophisticated approach than 154 

quantile mapping.  155 

 156 

Conclusions 157 

Quantile mapping can adapt IMERG data for applications that were designed to use TMPA 158 

precipitation estimates. In Central America, a daily landslide hazard model was adapted for use 159 

with IMERG data by quantile mapping across a single domain. The results were comparable to 160 

those for the original TMPA-based model. It is likely that other long-term precipitation datasets 161 

would benefit from the same treatment. However, this method may be more successful with 162 

threshold-based models and could be impacted by low sample size at the most extreme 163 

precipitation values. Another key limitation of the method is that it must be applied over a 164 

space-time domain with a consistent relationship between TMPA and IMERG. If this 165 

requirement cannot be met, a more sophisticated treatment of the data may be required. 166 

Ultimately, a longer IMERG record will obviate the need for this technique, because the user 167 

community will be able to develop new climatological datasets directly from IMERG.  168 



9 
 

 169 

Acknowledgements 170 

NASA’s GPM mission funded this research. Yudong Tian and Bin Yong provided many helpful 171 

comments. We also gratefully acknowledge the reviewers of this article for their helpful 172 

feedback. 173 

 174 

References 175 

Cannon, A. J., S. R. Sobie, and T. Q. Murdock, 2015: Bias Correction of GCM Precipitation by 176 

Quantile Mapping: How Well Do Methods Preserve Changes in Quantiles and Extremes? J. 177 

Clim., 28, 6938–6959, doi:10.1175/JCLI-D-14-00754.1. 178 

http://journals.ametsoc.org/doi/full/10.1175/JCLI-D-14-00754.1# (Accessed May 2, 2016). 179 

Gudmundsson, L., J. B. Bremnes, J. E. Haugen, and T. Engen Skaugen, 2012: Technical Note: 180 

Downscaling RCM precipitation to the station scale using quantile mapping – a comparison 181 

of methods. Hydrol. Earth Syst. Sci. Discuss., 9, 6185–6201, doi:10.5194/hessd-9-6185-182 

2012. http://www.hydrol-earth-syst-sci-discuss.net/9/6185/2012/. 183 

Hijmans, R. J., 2015: raster: Geographic Data Analysis and Modeling. R package version 2.4-15. 184 

http://cran.r-project.org/package=raster. 185 

Hou, A. Y., and Coauthors, 2014: The Global Precipitation Measurement Mission. Bull. Am. 186 

Meteorol. Soc., 95, 701–722, doi:10.1175/BAMS-D-13-00164.1. 187 

http://journals.ametsoc.org/doi/abs/10.1175/BAMS-D-13-00164.1. 188 



10 
 

Huffman, G. J., 2016a: GPM (IMERG) Late Precipitation L3 1 day 0.1 degree x 0.1 degree V03. 189 

ftp://jsimpson.pps.eosdis.nasa.gov/ (Accessed May 24, 2016). 190 

——, 2016b: TRMM (TMPA) Real-Time Precipitation L3 1 day 0.1 degree x 0.1 degree V07. 191 

ftp://trmmopen.gsfc.nasa.gov/pub/gis/ (Accessed July 17, 2016). 192 

——, and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-193 

Global, Multiyear, Combined-Sensor Precipitation Estimates at Fine Scales. J. 194 

Hydrometeorol., 8, 38–55, doi:10.1175/JHM560.1. 195 

——, R. F. Adler, D. T. Bolvin, and E. J. Nelkin, 2010: The TRMM Multi-satellite Precipitation 196 

Analysis (TMPA). Satellite Rainfall Applications for Surface Hydrology, F. Hossain and M. 197 

Gebremichael, Eds., Springer Verlag, 3–22. 198 

——, D. T. Bolvin, D. Braithwaite, K. Hsu, R. J. Joyce, and P. Xie, 2015: Algorithm Theoretical 199 

Basis Document (ATBD) for NASA Global Precipitation Measurement (GPM) Integrated 200 

Multi-satellitE Retrievals for GPM (IMERG). 30 pp. 201 

Kirschbaum, D. B., R. F. Adler, Y. Hong, S. Hill, and A. Lerner-Lam, 2010: A global landslide 202 

catalog for hazard applications: Method, results, and limitations. Nat. Hazards, 52, 561–203 

575, doi:10.1007/s11069-009-9401-4. 204 

——, T. Stanley, and J. Simmons, 2015a: A dynamic landslide hazard assessment system for 205 

Central America and Hispaniola. Nat. Hazards Earth Syst. Sci., 15, 2257–2272, 206 

doi:10.5194/nhess-15-2257-2015. http://www.nat-hazards-earth-syst-207 

sci.net/15/2257/2015/nhess-15-2257-2015.html (Accessed November 10, 2015). 208 



11 
 

——, ——, and S. Yatheendradas, 2015b: Modeling Landslide Susceptibility over Large Regions 209 

with Fuzzy Overlay. Landslides, doi:10.1007/s10346-015-0577-2. 210 

http://link.springer.com/article/10.1007/s10346-015-0577-2. 211 

——, ——, and Y. Zhou, 2015c: Spatial and temporal analysis of a global landslide catalog. 212 

Geomorphology, 249, 4–15, doi:10.1016/j.geomorph.2015.03.016. 213 

http://www.sciencedirect.com/science/article/pii/S0169555X15001579. 214 

——, and Coauthors, 2016: NASA’s Remotely-sensed Precipitation: A Reservoir for Applications 215 

Users. Bull. Am. Meteorol. Soc., In review. 216 

Kucera, P. A., E. E. Ebert, F. J. Turk, V. Levizzani, D. Kirschbaum, F. J. Tapiador, A. Loew, and M. 217 

Borsche, 2013: Precipitation from space: Advancing earth system science. Bull. Am. 218 

Meteorol. Soc., 94, 365–375, doi:10.1175/BAMS-D-11-00171.1. 219 

http://journals.ametsoc.org/doi/full/10.1175/BAMS-D-11-00171.1. 220 

Maraun, D., 2013: Bias Correction, Quantile Mapping, and Downscaling: Revisiting the Inflation 221 

Issue. J. Clim., 26, 2137–2143, doi:10.1175/JCLI-D-12-00821.1. 222 

http://journals.ametsoc.org/doi/abs/10.1175/JCLI-D-12-00821.1 (Accessed May 4, 2016). 223 

R Core Team, 2015: R: A language and environment for statistical computing. http://www.r-224 

project.org/. 225 

Reichle, R. H., and R. D. Koster, 2004: Bias reduction in short records of satellite soil moisture. 226 

Geophys. Res. Lett., 31, doi:10.1029/2004GL020938. 227 

http://onlinelibrary.wiley.com/doi/10.1029/2004GL020938/full. 228 



12 
 

Turkington, T., A. Remaître, J. Ettema, H. Hussin, and C. van Westen, 2016: Assessing debris 229 

flow activity in a changing climate. Clim. Change, 0, 1–16, doi:10.1007/s10584-016-1657-6. 230 

http://link.springer.com/article/10.1007/s10584-016-1657-6. 231 

Voisin, N., J. C. Schaake, and D. P. Lettenmaier, 2010: Calibration and Downscaling Methods for 232 

Quantitative Ensemble Precipitation Forecasts. Weather Forecast., 25, 1603–1627, 233 

doi:10.1175/2010WAF2222367.1. 234 

Ward, A., and D. Kirschbaum, 2014: Measuring Rain for Society’s Gain: GPM Applications 235 

Workshop. NASA Earth Obs., 26, 4–11. 236 

——, ——, and M. Hobish, 2015: Measuring Rain and Snow for Science and Society: The Second 237 

GPM Applications Workshop. Earth Obs., 27, 4–11. 238 

Wood, A. W., L. R. Leung, V. Sridhar, and D. P. Lettenmaier, 2004: Hydrologic implications of 239 

dynamical and statistical approaches to downscaling climate model outputs. Clim. Change, 240 

62, 189–216, doi:10.1023/B:CLIM.0000013685.99609.9e. 241 

http://link.springer.com/article/10.1023/B:CLIM.0000013685.99609.9e#enumeration. 242 

  243 



13 
 

Tables 244 

Table 1: Summary of TRMM and GPM multi-satellite products, resolutions, availability and 245 

latency. The TRMM Level 3 multi-satellite product TMPA has a near real-time version that is 246 

calibrated with a gauge climatology and a research product that uses a global network of 247 

gauges to calibrate the product. GPM Level 3 IMERG has three versions: the early run is 248 

produced with a latency of ~5 hours after satellite acquisition. The late run uses more satellite 249 

information and an improved morphing scheme, and a final run uses a global gauge network to 250 

calibrate the observations. 251 

Satellite Algorithm 
Name 

Resolution    
Coverage Available Latency    

Space Time 

TRMM 

TRMM Multi-
Satellite 

Precipitation 
Analysis (TMPA 

Version 7) 

0.25° 
x 

0.25° 
3 hours 

Gridded, 
50°N-
50°S 

2000-
present 8 hours (Real time) 

1998 to 
present 2 months (Research) 

GPM 

Integrated 
Multi-satellitE 
Retrievals for 
GPM (IMERG) 

0.1° x 
0.1° 

30 
minutes 

Gridded, 
65°N-
65°S 

April 2015-
present 5 hours (Early run) 

March 
2015-

present 
15 hours (Late run) 

March 
2014-

Present 

3.5 months (Final 
run) 

 252 

Table 2: The performance of TMPA-RT and IMERG-L was compared by determining the number 253 

of landslides predicted by each model run. This table shows: (a) precipitation product ; (b) 254 

corresponding date range; (c) version of LHASA that was tested (d) number of landslides 255 

reported during each time period; (e)-(g) proportion of landslides for which a nowcast was 256 
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issued on the reported date (1-day), the day before or after the reported event (3-day), and 257 

within a 7-day window around the reported date, respectively; and (h) FPR or overall frequency 258 

with which LHASA issues nowcasts at dates and places without recorded landslides.  259 

a. Model 
input 

b. Date 
range of 

model run 

c. Hazard 
Level 

d. 
Landslide 
Reports 

e. 1-
day 
TPR 

f. 3-
day 
TPR 

g. 7-
day 
TPR 

h. FPR 

TMPA-RT 2007-2013 Moderate 99 64% 77% 83% 11% 
TMPA-RT 2014 Moderate 43 58% 74% 79% 9% 

TMPA-RT 5/2015-
5/2016 Moderate 73 45% 73% 84% 6% 

IMERG-L 5/2015-
5/2016 Moderate 73 56% 73% 82% 10% 

TMPA-RT 2007-2013 High 99 26% 37% 47% 1% 
TMPA-RT 2014 High 43 12% 33% 47% 1% 

TMPA-RT 5/2015-
5/2016 High 73 15% 29% 37% 1% 

IMERG-L 5/2015-
5/2016 High 73 12% 40% 49% 1% 

 260 

  261 
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Figure Caption List 262 

Figure 1: Difference between TMPA-RT (regridded to 0.1°) and IMERG-L from March 7, 2015 to 263 

March 6, 2016 for the daily a) 75th and b) 95th percentiles. Positive values indicate areas where 264 

TMPA-RT is higher (blue) and negative areas show that IMERG-L is higher (red). At these 265 

percentiles, no difference was observed in many arid regions, but differences can be observed in 266 

those regions during rare precipitation events. 267 

Figure 2: Quantile-quantile plot for the Central American land area for May 6, 2015-May 5, 268 

2015. 100,000 quantiles (open circles) were calculated for the TMPA-RT and IMERG-L rainfall 269 

estimates. In quantile mapping, a value from one product is used to look up the value of the 270 

second product at the same quantile. For example, if a TMPA-RT precipitation threshold were 271 

180 mm day-1, the equivalent IMERG-L value would be 231 mm day-1. 272 

Figure 3: (a) The LHASA high-hazard rainfall threshold was calculated from TMPA-RT data for 273 

the period 2001-2014. (b) The quantile-mapped IMERG-L equivalent thresholds. 274 

Figure 4: Quantile-quantile plot of two locations in Costa Rica, as well as the whole of Central 275 

America (black). Dry days are not shown. El Bosque (blue) is separated from San José (red) by 276 

approximately 45 kilometers, but the observed relationship between IMERG-L and TMPA-RT is 277 

dramatically different. The capital of Costa Rica has an anomalous IMERG record, in which 278 

precipitation is both heavier and more frequent.  279 

  280 
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Figures 281 

 282 

Figure 1: Difference between TMPA-RT (regridded to 0.1°) and IMERG-L from March 7, 2015 to 283 

March 6, 2016 for the daily a) 75th and b) 95th percentiles. Positive values indicate areas where 284 

TMPA-RT is higher (blue) and negative areas show that IMERG-L is higher (red). At these 285 

percentiles, no difference was observed in many arid regions, but differences can be observed in 286 

those regions during rare precipitation events. 287 
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 289 

Figure 2: Quantile-quantile plot for the Central American land area for May 6, 2015-May 5, 290 

2015. 100,000 quantiles (open circles) were calculated for the TMPA-RT and IMERG-L rainfall 291 

estimates. In quantile mapping, a value from one product is used to look up the value of the 292 
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second product at the same quantile. For example, if a TMPA-RT precipitation threshold were 293 

180 mm day-1, the equivalent IMERG-L value would be 231 mm day-1. 294 

 295 

 296 

Figure 3: The LHASA high-hazard rainfall threshold was calculated from a) TMPA-RT data for the 297 

period 2001-2014, b) the quantile-mapped IMERG-L equivalent thresholds. 298 

 299 

 300 



19 
 

Figure 4: a) Quantile-quantile plot of two locations in Costa Rica, as well as the whole of Central 301 

America (black). Dry days are not shown. El Bosque (blue) is separated from San José (red) by 302 

approximately 45 kilometers, but the observed relationship between IMERG-L and TMPA-RT is 303 

dramatically different. b) The capital of Costa Rica has an anomalous IMERG record, in which 304 

precipitation is both heavier and more frequent.  305 


	Abstract
	Introduction
	Methods
	Results
	Discussion
	Conclusions
	Acknowledgements
	References
	Tables
	Figure Caption List
	Figures

